博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Cesium入门9 - Loading and Styling Entities-加载和样式化实体
阅读量:7055 次
发布时间:2019-06-28

本文共 9109 字,大约阅读时间需要 30 分钟。

hot3.png

Cesium入门9 - Loading and Styling Entities - 加载和样式化实体

Cesium中文网: | 国内快速访问:

现在我们已经为我们的应用程序设置了Viewer配置、imagery和terrain的阶段,我们可以添加我们的应用程序的主要焦点——geocache数据。

为了便于可视化,Cesium支持流行的矢量格式GeoJson和KML,以及一种我们团队自己开源的格式,我们专门开发用于描述Cesium场景的[]CZML]()。

无论初始格式如何,Cesium中的所有空间数据都使用Entity API来表示。Entity API以一种有效提供灵活的可视化的方式,以便对Cesium进行渲染。Cesium Entity是可以与样式化图形表示配对并定位在空间和时间上的数据对象。测试沙盒中提供了许多。为了在Entity API的基础上加快速度,从这个应用程序中休息一下,然后阅读。

以下有一些关于不同entity类型的例子:

一旦你掌握了一个Entity的样子,用Cesium装载数据集将是变得容易理解。要读取数据文件,需要创建适合于数据格式的数据源DataSource,该数据源将解析在指定URL中承载的数据文件,并为数据集中的每个地理空间对象创建包含Entity的*EntityCollection***。DataSource只是定义了一个接口——您需要的数据源的确切类型将取决于数据格式。例如,KML使用KmlDataSource**源代码。比如:

var kmlOptions = {    camera : viewer.scene.camera,    canvas : viewer.scene.canvas,    clampToGround : true};// Load geocache points of interest from a KML file// Data from : http://catalog.opendata.city/dataset/pediacities-nyc-neighborhoods/resource/91778048-3c58-449c-a3f9-365ed203e914var geocachePromise = Cesium.KmlDataSource.load('./Source/SampleData/sampleGeocacheLocations.kml', kmlOptions);

上述代码读取我们样例的geocahce点,从一个KML文件中,调用KmlDataSource.load(optinos)带一些配置。针对一个KmlDataSource,相机和Canvas配置项是必须的。clamptoGround选项激活了ground clamping,一种流行的描述配置用于是地面的几何entities比如多边形和椭圆符合地形而且遵从WGS84椭圆面。

由于这些数据是异步加载的,因此针对KmlDataSource返回一个的Promise,它将包含我们所有新创建的entities。

如果您不熟悉使用异步函数的PromiseAPI,这里的“异步”基本上意味着您应该在所提供的回调函数中完成所需的数据**.then.为了实际地将这些实体集合添加到场景中,我们必须等待直到promise完成,然后将KmlDataSource添加viewer.datasrouces**。取消以下几行注释:

// Add geocache billboard entities to scene and style themgeocachePromise.then(function(dataSource) {    // Add the new data as entities to the viewer    viewer.dataSources.add(dataSource);});

默认情况下,这些新创建的实体具有有用的功能。单击将显示与实体相关的元数据的信息框Infobox,并双击缩放并查看实体。若要停止查看该实体,请单击“home”按钮,或单击“信息框”上的“划出”相机图标。接下来,我们将添加自定义样式来改善我们的应用程序的外观style。

对于KML和CZML文件,可以在文件中建立声明式样式。然而,对于这个应用,让我们练习手动设计我们的实体。要做到这一点,我们将采取类似的方法来处理,等待我们的数据源加载,然后迭代数据源集合中的所有实体,修改和添加属性。默认情况下,我们的geocache点标记被创建为BillboardsLabels,所以为了修改这些实体的外观,我们这样做:

// Add geocache billboard entities to scene and style themgeocachePromise.then(function(dataSource) {    // Add the new data as entities to the viewer    viewer.dataSources.add(dataSource);    // Get the array of entities    var geocacheEntities = dataSource.entities.values;    for (var i = 0; i < geocacheEntities.length; i++) {        var entity = geocacheEntities[i];        if (Cesium.defined(entity.billboard)) {            // Entity styling code here        }    }});

我们可以通过调整它们的锚点、去除标签来减少clutter和设置isplayDistanceCondition来改善标记的外观,使得只有在距相机的一定距离内的点是可见的。

// Add geocache billboard entities to scene and style themif (Cesium.defined(entity.billboard)) {	// Adjust the vertical origin so pins sit on terrain	entity.billboard.verticalOrigin = Cesium.VerticalOrigin.BOTTOM;	// Disable the labels to reduce clutter	entity.label = undefined;	// Add distance display condition	entity.billboard.distanceDisplayCondition = new Cesium.DistanceDisplayCondition(10.0, 20000.0);}

有关distanceDisplayCondition的更多帮助,请参见。

接下来,让我们为每个geocache实体改进信息框Infobox。信息框的标题是实体名称,内容是实体描述,显示为HTML。

你会发现默认的描述并不是很有帮助。由于我们正在显示geocache 位置,让我们更新它们来显示点的经度和纬度。

首先,我们将实体的位置转换成地图,然后从Cartographic中读取经度和纬度,并将其添加到HTML表中的描述中。

在单击时,我们的geocache 实体现在将显示一个格式良好的信息框Infobox,只需要我们所需要的数据。

// Add geocache billboard entities to scene and style themif (Cesium.defined(entity.billboard)) {	// Adjust the vertical origin so pins sit on terrain	entity.billboard.verticalOrigin = Cesium.VerticalOrigin.BOTTOM;	// Disable the labels to reduce clutter	entity.label = undefined;	// Add distance display condition	entity.billboard.distanceDisplayCondition = new Cesium.DistanceDisplayCondition(10.0, 20000.0);	// Compute longitude and latitude in degrees	var cartographicPosition = Cesium.Cartographic.fromCartesian(entity.position.getValue(Cesium.JulianDate.now()));	var longitude = Cesium.Math.toDegrees(cartographicPosition.longitude);	var latitude = Cesium.Math.toDegrees(cartographicPosition.latitude);	// Modify description	// Modify description	var description = '
' + '
' + '
' + '
' + "Longitude" + ' ' + longitude.toFixed(5) + '
' + "Latitude" + ' ' + latitude.toFixed(5) + '
'; entity.description = description;}

我们的geocache标记现在应该看起来像这样:

对于我们的地理应用程序来说,可视化特定点的邻域也会有帮助。让我们试着为每个纽约街区记载一个包含多边形的GeoJson文件。加载GeoJson文件最终非常类似于我们刚刚用于KML的加载过程。但是在这种情况下,我们使用GeoJsonDataSource。与前一个数据源一样,我们需要将它添加到***viewer.datasources***中,以便实际添加数据到场景中。

var geojsonOptions = {    clampToGround : true};// Load neighborhood boundaries from KML filevar neighborhoodsPromise = Cesium.GeoJsonDataSource.load('./Source/SampleData/neighborhoods.geojson', geojsonOptions);// Save an new entity collection of neighborhood datavar neighborhoods;neighborhoodsPromise.then(function(dataSource) {    // Add the new data as entities to the viewer    viewer.dataSources.add(dataSource);});

让我们来调整我们加载的neighborhood多边形。就像我们刚才做的billboard样式一样,我们首先在数据源加载后迭代遍历neighborhood 数据源实体,这次检查每个实体的多边形被定义:

// Save an new entity collection of neighborhood datavar neighborhoods;neighborhoodsPromise.then(function(dataSource) {    // Add the new data as entities to the viewer    viewer.dataSources.add(dataSource);    neighborhoods = dataSource.entities;    // Get the array of entities    var neighborhoodEntities = dataSource.entities.values;    for (var i = 0; i < neighborhoodEntities.length; i++) {        var entity = neighborhoodEntities[i];        if (Cesium.defined(entity.polygon)) {            // entity styling code here        }    }});

既然我们正在显示neighborhood,让我们重命名每个实体使用neighborhood作为它的名字。我们所读的neighborhood中原始GeoJson文件作为属性。Cesium将GeoJson属性存储在enty.properties中,这样我们就可以设置这样的neighborhood名称:

// entity styling code here// Use geojson neighborhood value as entity nameentity.name = entity.properties.neighborhood;

我们可以把每一个多边形分配给一个新的颜色材料属性,通过ColorMaterialProperty设置随机颜色Color,而不是把所有的区域都设置成一样的颜色。

// entity styling code here// Set the polygon material to a random, translucent color.entity.polygon.material = Cesium.Color.fromRandom({    red : 0.1,    maximumGreen : 0.5,    minimumBlue : 0.5,    alpha : 0.6});// Tells the polygon to color the terrain. ClassificationType.CESIUM_3D_TILE will color the 3D tileset, and ClassificationType.BOTH will color both the 3d tiles and terrain (BOTH is the default)entity.polygon.classificationType = Cesium.ClassificationType.TERRAIN;

最后,让我们为每个实体生成一个带有一些基本样式选项的标签Label。为了保持整洁,我们可以使用disableDepthTestDistance让Cesium总是把标签放在任何3D物体可能遮挡的地方。

然而,请注意,标签总是位于*entity.position***。多边形Polygon**是由一个未定义的位置创建的,因为它有一个定义多边形边界的位置列表。我们可以通过取多边形位置的中心来生成一个位置:

// entity styling code here// Generate Polygon positionvar polyPositions = entity.polygon.hierarchy.getValue(Cesium.JulianDate.now()).positions;var polyCenter = Cesium.BoundingSphere.fromPoints(polyPositions).center;polyCenter = Cesium.Ellipsoid.WGS84.scaleToGeodeticSurface(polyCenter);entity.position = polyCenter;// Generate labelsentity.label = {    text : entity.name,    showBackground : true,    scale : 0.6,    horizontalOrigin : Cesium.HorizontalOrigin.CENTER,    verticalOrigin : Cesium.VerticalOrigin.BOTTOM,    distanceDisplayCondition : new Cesium.DistanceDisplayCondition(10.0, 8000.0),    disableDepthTestDistance : 100.0};

这给我们标出了看起来像这样的多边形:

最后,让我们通过在城市上空添加无人机飞行来增加我们的NYC geocaches 的高科技视角。

由于飞行路径只是一系列随时间变化的位置,所以我们可以从CZML文件中添加这些数据。CZML是一种用于描述时间动态图形场景的格式,主要用于在运行Cesium的Web浏览器中显示。它描述了线、点、billboards、模型和其他图形原语,并指定它们如何随时间变化。CZML之于Cesium,相当于KML之于谷歌地球的标准格式,它允许大多数Cesium功能特性通过声明式样式语言(在这种情况下是JSON模式)使用。

我们的CZML文件定义了一个实体(默认为可视化的一个点),其位置被定义为在不同时间点的一系列位置。实体API中有几种属性类型可用于处理时间动态数据。参见下面的演示示例:

// Load a drone flight path from a CZML filevar dronePromise = Cesium.CzmlDataSource.load('./Source/SampleData/SampleFlight.czml');dronePromise.then(function(dataSource) {    viewer.dataSources.add(dataSource);});

CZML文件使用Cesium来显示无人机飞行,该路径是实体随时间显示其位置的属性。一条路径用插值法将离散点连接到一条连续的直线上进行可视化。 最后,让我们改善无人机飞行的外观。首先,而不是简单地解决问题,我们可以加载一个3D模型来表示我们的无人机并将其附加到实体上。

Cesium支持基于glTF(GL传输格式)加载3D模型,这是Cesium团队与Khronos group一起开发的开放规范,用于通过最小化文件大小和运行时间处理来有效地加载应用程序的3D模型。没有gLTF模型吗?我们提供了一个在线转换器,将COLLADA和OBJ文件转换为glTF格式。

让我们加载一个无人机模型Model,具有良好的基于物理的阴影和一些动画:

var drone;dronePromise.then(function(dataSource) {    viewer.dataSources.add(dataSource);    // Get the entity using the id defined in the CZML data    drone = dataSource.entities.getById('Aircraft/Aircraft1');    // Attach a 3D model    drone.model = {        uri : './Source/SampleData/Models/CesiumDrone.gltf',        minimumPixelSize : 128,        maximumScale : 1000,        silhouetteColor : Cesium.Color.WHITE,        silhouetteSize : 2    };});

现在我们的模型看起来不错,但与原来的点不同,无人机模型具有方向性,当无人驾驶飞机向前移动时,它看起来很奇怪。幸运的是,Cesium提供了一种,它将根据一个实体向前和向后采样的位置自动计算方向:

// Add computed orientation based on sampled positionsdrone.orientation = new Cesium.VelocityOrientationProperty(drone.position);

现在我们的无人驾驶飞机模型将如期进行。

还有一件事我们可以做的是改善我们的无人机飞行的外观。从远处看,它可能并不明显,但无人机的路径是由看起来不自然的线段组成的,这是因为Cesium使用线性插值来构建从默认采样点的路径。然而,可以配置插值选项。

为了获得更平滑的飞行路径,我们可以改变这样的插值选项:

// Smooth path interpolationdrone.position.setInterpolationOptions({    interpolationDegree : 3,    interpolationAlgorithm : Cesium.HermitePolynomialApproximation});

Cesium中文网交流QQ群:807482793

Cesium中文网: | 国内快速访问:

转载于:https://my.oschina.net/u/1470240/blog/1932113

你可能感兴趣的文章
专注Jquery
查看>>
CSS之flex兼容
查看>>
《APUE》读书笔记—第四章文件和目录
查看>>
10分钟精通SharePoint - SharePoint定位
查看>>
密码应用技术系列之0:开篇
查看>>
cat、head、tail、more和less命令(文件内容浏览)
查看>>
SpringMVC (八)SpringMVC返回值类型
查看>>
poj1190生日蛋糕--DFS
查看>>
多线程-synchronized
查看>>
2018.03.28
查看>>
cc笔记_web测试方法总结
查看>>
Exchange企业实战技巧(18)日志规则应用之审计邮箱
查看>>
sharepoint 2010 同步问题
查看>>
iftop流量监控使用
查看>>
自动化运维工具(四)之 (虚拟主机)
查看>>
Linux分区
查看>>
Slider Revolution实现幻灯片
查看>>
bootstrap提供了六种列表效果
查看>>
解决RPM包依赖的几种方法
查看>>
LAMP+LogAnalyzer日志服务器环境搭建
查看>>